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ON THE LONG PERIOD LUNI-SOLAR

EFFECT IN THE MOTION OF AN

ARTIFICIAL SATELLITE

by

Peter Musen

Goddard Space Flight Center

SUMMARY

Two systems of formulas are presented for the determination of the

long period perturbations caused by the Sun and the Moon in the motion of

an artificial satellite. The first system can be used to determine the lunar

effect for all satellites. The second method is more convenient for finding

the lunar effect for close satellites and the solar effect for all satellites.

Knowledge of these effects is essential for determining the stability of

the satellite orbit. The basic equations of both systems are arranged in a

form which permits the use of numerical integration. The two theories are

more accurate and more adaptable to the use of electronic machines than

the analytical developments obtained previously.
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LIST OF SYMBOLS

the mean anomaly at the epoch of the satellite

the mean anomaly of the satellite for the moment t

the argument of the perigee of the satellite

the longitude of the ascending node of the satellite

the inclination of the satellite orbit with respect to the equator

the eccentricity of the orbit of the satellite

the semi-major axis of the orbit of the satellite

the mean motion of the satellite

the eccentric anomaly of the satellite

a ( 1 - e 2 )

the mean anomaly at the epoch of the disturbing body

the mean anomaly of the disturbing body at the moment t

the argument of the perigee of the orbit of the disturbing body,

but with respect to the ecliptic of the fixed epoch

the longitude of the ascending node of the orbit of the disturbing

body with respect to ecliptic

the inclination of the orbit of the disturbing body toward ecliptic

the eccentricity of the orbit of the disturbing body

the semi-major axis of the orbit of the disturbing body

the mean motion of the disturbing body

the disturbing function

the position vector of the satellite

the unit vector directed from the earth's center to the disturbing

body
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j, k

P

Q

p,

R#

r

h

F

F.

M.

M00

the basic system of unit vectors in the equatorial system of

coordinates

the unit vector directed from the earth's center toward the

perigee of the satellite

the unit vector standing normally to the orbit plane of the

satellite in the direction of the angular momentum

the unit vector standing normally to P and B, Q = R x p

the unit vector directed from the e_ rth's center toward the

perigee of the disturbing body

the unit vector standing normally to the orbit plane of the dis-

turbing body in the direction of the angular momentum

a unit vector standing normally to P' and R', Q' = R' x p'

the unit vector along the line of nodes

the disturbing force

the disturbing force F averaged ow_r the revolution of one

body

the momentum of F averaged over _he revolution of one

body

the momentum of the disturbing for,;e F averaged over the

revolutions of both bodies
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ON THE LONG PERIOD LUNI-SOLAR

EFFECT IN THE MOTION OF AN

ARTIFICIAL SATELLITE

by

Peter Musen

Goddard Space Flight Center

INTRODUCTION

O

Two systems of formulas are presented herein for determining lunar

and solar long period effects of the first order in the motion of an artificial

satellite. The first method is based on the theory originally developed by

Gauss (Reference l) for a numerical treatment of the very long period ef-

fects in planetary motion, which was found to be applicable to the case of

artificial satellites. The second method is valid for close satellites and is

based on the development of the disturbing function in terms of Zegendre

polynomials.

Knowledge of these long period effects is essential in determining the

stability of the orbit and the lifetime of the satellite. As an example, Kozai

(Reference Z) found that the solar and lunar perturbations have shortened

the lifetime of Explorer VI (1959 Delta) by a factor of ten. The long period

lunar effect can be deduced by averaging the perturbations with respect to

the mean anomaly of the Moon and with respect to the mean anomaly of the

satellite. The first averaging process is performed analytically, the second

process numerically. The long period solar effect is obtained by averaging

the perturbations with respect to the mean anomaly of the satellite only.

Both methods result in the numerical integration of the equations for the

variation of elements.



The interval of integration depends upon the proximity of the satellite to

the earth and upon the secular changes of the re,de and perigee produced by

the earth's oblateness. In a normal case the in:erval of integration will be

of the order of several days. For more distant satellites it can be of the

order of one month or more. The choice of such a large interval is impossi-

ble if Cowell's method of integration in therectmgularcoordinates is used.

For more distant satellites it was found that the development of the dis-

turbing function into series of Legendre polynomials converges so slowly

that it is impossible to include all important lor_g period terms in an analyt-

ical development. Alarge orbital inclination might also contribute substan-

tially to the slowness of the convergence. In suzh a case, as for example

a = 10 earth radii, e = 0.8, the analytical development obtained by Musen and

Bailie (Reference 3) becomes incomplete. These circumstances gave rise to

the investigation of the possible use of the Gaussian method for determining

the lunar long period effects in the motion of an artificial satellite.

Halphen's form (Reference 4, with corrections by Goriachev, Reference

5)of the Gaussian methodwas found to be the most convenient,partly because

it is very adaptable to the use of electronic computers. Some necessary

modifications were made to include the basic perturbations of the motion of

the Moon. Also, the Goursat transformation (R(ference 6) and the Euler

summability process were employed to speed ur the convergence of the

hypergeometric series. This method is valid for all values of e, i and a/a'.

The development in terms of Legendre polynomials can be used if the

lunar perturbations for close satellites or the s,_lar perturbations for all

satellites are to be determined. The basic equazions of these two cases are

arranged in the form which permits the use of tile numerical integration and

includes all the significant long period terms. 3'heoretically, these equations

are completely equivalent to the extensive analy:ical developments obtained

by Kozai (Reference Z} and byMusen and Bailie (Reference 3) but they have

a more compact and symmetrical form and are r_ore adaptable to the use of

electronic machines. Thus the formulas given here represent, from a prac-

tical point of view, a substantial improvement over the previous methods.

LUNAR DISTURBING FORCE IN THE MOTION OF A

DISTANT ARTIFICIAL SATELLITE

Let go, oJ, _I, i, e, a, n be the osculating elements ollthe artificial

' co' _' i' e' a' n'satellite referred to the earth's equator, and gO , .... be



the elements of the Moon referred to the fixed ecliptic. We assume that

there is no sharp commensurability between the mean motions n and n'.

is sufficient to take into account the secular changes in the _' , _' and to

neglect the periodic effects and the influence of the precession. Let P be

the unit vector directed from the center of the earth to the perigee of the

orbit of the satellite, R be the unit vector standing normally to the orbit

plane and

Q : R×P.

Let P', Q', R' be the corresponding vectors of the orbit of the Moon.

Putting

Al(a) I+!o o]= + cos a - sin

+ sin a + cos

It

A3(a)
I_ cos c_ - sin a ii

= sin a + cos a 0

0 0 +

we have for the components of P, Q, R and P', Q', R' in the equatorial

system:

[P, Q, R] = A3(_)'AI(i)'A3(w), (i)

[P', O', R'] = A1(¢) • A3(_') " Al(i') • A3(_J') • (z)

The angle between the equator and the ecliptic is E. Designating u as the

eccentric anomaly of the satellite, we have for the position vector

Let

r = Pa(cos u - e) + Qavf_- e 2 sin u.

r

p:-- s + e'P'
a

(3)

(4)

= P s(cos u - e) + Q s v _- e 2 sin u + e' P',

where s is the parallax,

a

S -- ---7

a
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Put

= p.P', _ = p.Q' y = p.R' o

The system of Halphen's formulas for the =omputation of auxiliary quan-

titles can be slightly modified and rewritten in our notation:

KI = p2 _ 2 + e'2 , (5)

K2 : (i - e'2)(l - a2) _ _2 _ (_ _ e,2) 72 , (6)

K3 : 72(i - e'2) (7)

gz : _4 (Kz _ aK2) , (8)

4
g3 = 2-"_ (2K13 - 9K1K2 + 27K3) ' (9)

2
27 g3

3
g2

The next step in Halphen's method is the computation of

(lo)

_ w F(1 5 1, 1 - () (11)_(_) _ ' 1-_' '

and of

5 7T F(13 17 2 1- 4:__'(_) -
144 _ \-_' I--2' ' /' (12)

v_ _ 144
A _ 3 . Vr_-¢ '(_) , (13)

9 g2

u
!

o
d_

B - _ 9(_). (14)
wg2

The values of ff will be proper fractions. The series (Equations lland

IZ) possess an algebraic branch point at _ : 0 and the convergence in the



neighborhood of this singularity is slow. To obtain more convenient for-

mulas representing the series rather uniformly in the interval 0 < _ < 1

with the accuracy of at least 10 .6 , the Goursat transformations and then the

E summability process are applied. Putting

1 5
a -- --

12' b - 12' z = 1 -

in

< i)F a, b, a + b + _-, z

( < )_- 1 1 1 - 13/]--C-_-z
1+ F 2a, a- b +_-, a + b + 2, 1+ 1_/I-T--T-z ,

we deduce that

O

¢(f)
=-_ +Jr (1 1 )F 6' 6' 1, -w .

Putting

13 17
- 12' b = i-2' z--1-f

in

( 1)F a, b, a+b - _-, z

< <.i 1 + 1
(i-z) 2 F 2a-l, a-b + _-, a+b

we have

v_-¢' (f)
144

Z

where

2j

2 t

(15)

(16)

W -
I-¢7-
l+v_"



The series (Equations 15 and 16) are alternating and the E-process can be

applied to speed up their convergence. The forrrula of the E-process for

hypergeometric series takes the form

N

F(a, b c,-x) = 2 (-1)k (a, k) (b, k) xk' (1, k) (c, k)
k=0

+ lira 2 (-1)N+J (a' N+J) (b' N+J) xN÷J 2____1 (P)
m--,co j=0 (1, N+j) (c, N+j) p=J 2 p+l '

(:7)

where

(q, k) = q(q+l) ..... (q+k- 1) .

Applying Equation 17 to the series (Equations 15 and 16) and putting N = 3,

m = 19, we deduce the two following expressions Jn which the coefficients are

rapidly decreasing as the power of w increases.

1

( 144
1

× (+ 2.3870942 × (-

- 0.0663082 w +

+ 0.0225632 w 2

- 0.0117691 w 3 +

+ 0.0073743 w 4

- 0.0051060 w 5 +

+ 0.0037250 w 6

- 0.0027325 w 7 +

+ 0.0019070 w 8

- 0.0011936 w 9 +

+ 0.0006337 w 1°

- 0.0002710 w 11 +

+ 0.0000884 w 12

- 0.0000205 w 13 +

+ 0.0000030 w 14

- 0.0000002 wlS) ; +

7

2

3.7991784

0.3693646 w

0.1556119 w2

0.0889726 w 3

0.0586828 w ¢

0.0419870 w 5

0.0313364 w 6

0.0233758 w7

0.0165247 w8

0.0104483 w9

0.0055933 w 1°

0.0024083 w 11

0.0007898 w 12

0.0001837 w 13

0.0000268 w 14

0.0000018 w 15 )

t--d

0



The next step is to ,compute

K 4 = 9 K 3 - K 1 K 2 ,

7

and

K 5 = K 1 (K 1K 2 - 3 K 3) - 2 K d

3
all = K 4 (a 2- 1) + K s + _ g2 K3 ,

a2 2 = K4 (_2 _ 1 + e '2) + K 5 + 3 g2 K3
2 l- e 12 '

3 [a2(l _ e,2) + _2 ,2)Ja33 = K4 V2 + K5 + _ g2 - (1 - e ,

o

!

¢3

a12 = a21 = K 4 a_,

a23 = a32 = K4 - -ff g2 fl)''

a31 = a13 = K4 - 2- g2 (1 - ) 7a,

' = a 2 1 - 1
all -- _-K1 ,

, : /3 2 1 + e'2 - 1
a22 - _- K 1 ,

, = 72_ 1
a33 _ KI'

' ' a_a12 = a21 = ,

! i

a23 = = /3'ya32

t t

a31 = a13 = "ya.

Then the matrix is formed with the elements

• . a t
A19 = aij A + ij B .



Introducing the dyadic (a matrix),

O

+ AIIP'P'

= + A2 IQ'P'

+ A31R'P'

m

+ A12P' Q' + A13P'R'

+ A22Q' Q' + A23Q'R'

+ A32R' Q' + A33R'R'

(18)

we can represent the "disturbing force," averaged with respect to the mean

anomaly of the Moon, in the form

2km'
F° - ,3 q_" r ; (19)

a

and the averaged momentum

2km '

M0 - ,3 r × O' r . (20)
a

In addition, in the system adopted in this paper, w,; have to compute the

vector (Reference 7)

( r) 1K 0 -- 1 + _- F 0 - _-_ rr • F 0 . (21)

The vectors M0 and K 0 must be averaged along the orbit of the satellite:

217 .2"_

(Moo) - 27r M0 dg = _ _40- du,
a

(22)

U
I

0

2_ 2'rr

(Koo) = _-_ Ko dg = -_- Ko a " (Z3)

This averaging is done numerically, by giving the values 0 °, 30 °, 600''"

330 ° to u, computing values of Mo(r/a) and K0(r/a) for each of these

angles and then forming the arithmetical means.



THE FORM OF VARIATION OF CONSTANTS FOR

THE LONG PERIOD LUNAR EFFECTS

Designating the area "constant" by e,we have

and

e : v_ R, (24)

p : a(1-e2), (25)

dc

- r × F. (26)dt

Let h be the unit vector along the line of nodes and let (i,j, k) be the unit

vectors of the equatorial system. Then

h : i cos _ + j sin fi, (27)

R = h x k sin i + k cos i. (28)

It follows from Equations 27 and 28 that

dR df_ di

dt h sin i -_- + h x R dt ' (29)

and from Equation 26 that

d_Q di e
h sin i -r- + h × R

dt

de _La d,_- 1
dt l- e 2 !1 _ + V_ dt - _P-r × F . (30)

The long period effects are deduced from the last equation by applying the

double process of averaging and taking into account the fact that da/dt : 0:

dr2 1
- h • _MOO

sin i dt _p-
P (31)

di 1

at v7
Moo • h × R , (3z)

de V/1- e 2
- --R • Moo .

at ev_-_ -
(33)
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It is of interest to notice that for long period effects, the averaged

momentum is the only function of the disturbing force contained in the Equa-

tions 31 through 33. Equations 31 and 32 represent a particular case of

equations deduced by Makarova {Reference 8) for computing the special

perturbations of minor planets. From Reference 7,

di _ d_ _ __1_1rR " F- V_Rp" K , (34)
h-d--_ + k + R d--_-- _ e

where

K = 1 + F- r---{rr ' F. (35)

We deduce from Equation 34 the long period effect in co, and by taking Equa-

tion 31 into consideration obtain

_ cot i
dco _P • Koo h • Moo, (36)
dt e

where

27

1 _ p . KO r duP " KO0 - 2_ _ "

Equation 36 is identical in form to the equation for planetary perturbations,

deduced by Makarova on the basis of different considerations from Musen's

theory (Reference 7).

The system (Equations 31, 32, 33 and 36) is to be integrated numerically;

and the interval of integration can be of the order of several days.

¢J
!

o

THE LUNAR PERTURBATIONS OF A CLOSE SATELLITE AND

THE SOLAR PERTURBATIONS OF ALL SATELLITES

The computation of the lunar perturbations of a close satellite and of

the solar perturbations for all satellites can b_ accomplished by developing

the disturbing function into series of Eegendre polynomials. For this pur-

pose the discussion shall be limited to the second Legendre polynomial, and

the disturbing function takes the form



Ii

O

R-k_ :r2(+ +)r' 3 c°s2 |] - '
(37)

where H is the angle between r and r'. Let u O be the unit vector in the

direction of r' We have u O with the accuracy up to e' in the periodic

terms:

u 0 = P' (-e' + cos g' + e' cos 2g') + Q' (sin g' + e' sin 2g'), (38)

and Equation 37 becomes

km s
R -

2r r3
(3r. uOuO" r - r2) .

{39)

The "disturbing force" to be used in connection with the variation of

elements will be

__(a__'_ (3 uOu 0 •F = grad R - km' 3
a'3 \r']

r-r) (40)

and the momentum of F takes the form

M - 3kin' [ a'_3 uOu 0
a '3 \r'] r × • r •

(41)

Sub s t ituting

r = P r cos f + Qr sin f

into Equation 41, yields:

M +kin.2(.)+[ r22a,3 _-7 [:* × uOuO" P__ (1 + cos 2f)

Taking

2rr

r 2 r 2

+ P × uOu 0 • Q _ sin 2f + Q × u°u 0 • P _-ff sin 2f

r2 1+ Q× u°u°.Q-_ (1 - cos 2f)

3 e2
: 1 +_

,2+r

I j rA2_ a 2 cos 2f dg
0

= +
5

_e
2

(42)
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we obtain the averaged value of M0:

Mo - 3km'a2 (a')3[2a,3 _-7 1(1 + 4e 2) P× uOuO. P + (1-e 2) Q× u°uO. Q . (43)

Let _b, _b, and _? be angles which the basic vect,)rs P, Q, and 11 form with

the direction to the Moon; hence

cos ¢ = P. u °, cos _b = Q.u °, cos _ = R. u °. (44)

Replacing M00 in Equations 31, 32 and 33 by Equation 43, and considering

h • P × u 0 : + cos _ sin co,

h'Q × u0 = + cos _ cos co,

(h × R) " (P × u O) : + cos _? cos cJ,

(h × R)" (Q × u O) = - cos _ sin co,

R'P× u 0 = + cos _b,

R'Q_ u 0 = - cos _5,

h = P cos co - Q sin w,

w e obtain

dr2
sin i

D
I

O

_ 3km, a 2 3 cos _ (1+ 4e 2) cos_b sinco + (1-e 2) cosdJ cosc_ ;
2a '3 \r'] VP-

[ ],",di 3kin___a 2 3 cos _ ( 1 + 4e 2) cos 95 cos c_ - ( 1 - e 2 ) cos _b sin co ;
dt - 2a,3 \r']

dt _- e_ a' 3 \/_ cos _ cos _. (47)
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Setting the mass of the earth equal to I, we have

k
- na,

v%

and the system (Equations 45 through 47} becomes

dfl
sin i-_- =

_ E _
2_ -_z \r'j (l+4e 2) cos¢ ino_ + (1 e

2) cos¢ cos_J 1 cos_;

13

(48)

di

3m' n

21-_ _e2 (_,)3 \rl]/a'_3 [(
1+ 4e 2) cos_ cosw -

(l-e 2) cos_ sin_o] cos_; (49)

0

de _ 15 m'neT1- e2 (_)3 /a_ 3at 2 \_'7
cos ¢ ¢o_ ¢.

In addition we have, with sufficient accuracy,

= (1-e'2) -2 + 3e' cos g''
\r']

and for dc0/dt an equation analogous to Equation 36,

dco d_
"_ P'K 0 - cos i TC 'dt - e

where

(50)

(51)

Substituting

21'7

xF.rr]dg.K0 = _ 1 + F- r--p

km t

F -
13

r

- -- (3 uOu 0 • r - r)

(5Z)
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and with the solar perturbations for all satellite.,. This system contains all

the significant long period terms. In addition to the long period terms, the

lunar part also contains the terms having periods of the order of one month.

The interval of integration for the solar perturb_.tions can be taken to be

approximately one month. However, for the lunar perturbations it would be

preferable to take the interval to be of the order of days, to obtain a smoother

curve and to avoid ambiguity in interpreting the results.

CONCLUSION

The methods described here are more acculate and more adaptable to

the use of electronic computers than the analytical development obtained

previously. These methods can be used in invesligations connected with the

stability of orbits and for the separation of knowlt and unknown long period

effects in observations. It is recommended that in practical use the analyti-

cal development be replaced by the semi-analyti(:al solution given here.
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